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The entrainment due to a turbulent fountain
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We describe new experiments to measure the penetrative entrainment by a turbulent
fountain in a steady two-layer stratification. A theoretical model was established by
assuming that the stratification consists of two uniform layers, and the penetrative
entrainment rate is estimated quantitatively by three independent formulae. Two
quasi-uniform layers were observed in the steady state in the laboratory experiments.
Experimental results gave a nearly constant dimensionless penetrative entrainment
rate (0.65 ± 0.17) across a density interface when the local Richardson number is
smaller than 1.2.

1. Introduction
The aim of this study is to investigate penetrative entrainment by a turbulent

fountain at a density interface of a two-layer fluid. Penetrative entrainment plays a
crucial role in determining the stratification in a space ventilated with an Under Floor
Air Distribution system (hereinafter referred to as UFAD), which is an emerging
cooling strategy for commercial buildings. In a UFAD system, cool air is blown
upwards into a space. This cool dense air is driven upwards by the momentum flux
of the air which is usually imparted by a pressure difference between an underfloor
plenum and the air in the room. Under normal operating conditions, this cool air
forms a turbulent ‘fountain’ (Turner 1966), which entrains air from its surroundings as
it rises. In most UFAD applications, warm air produced by heat sources is extracted
at the ceiling and the fountain impinges on this warmer upper region. Since the
fountain is relatively cold, it falls down after reaching some height and, entrains
and transports downwards some of this warm air. This paper provides a measure of
this entrainment. See Webster, Bauman & Reese (2002), Bauman (2003) and Lin &
Linden (2005) for details of the performance of this cooling system.

Penetrative entrainment by a turbulent fountain is also used to recirculate a water
reservoir, such as a pond or a lake, and can have a significant effect on water quality.
Usually, stable stratification suppresses the vertical exchange of water masses and
results in stagnation zones with inferior water quality. Momentum water jets aid
the vertical water mass transport and prevent the establishment of stable density
stratification (Stephens & Imberger 1993; Larson & Jonsson 1996).

† Present address: Energy & Resources Lab., Industrial Technology Research Institute,
Bldg 64, 195, Sec. 4, Chung Hsing Road, Chutung, Hsinchu, Taiwan 310.
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1.1. A turbulent fountain

Different signs (positive, zero and negative) of buoyancy from a jet source categorize
three different jet structures as a buoyant jet, a pure jet and a fountain (or a negatively
buoyant jet), respectively. In this study, we focus on the structure of a fountain. A
fountain occurs when the initial momentum is upward and the jet fluid is negatively
buoyant (or vice versa). The (negative) buoyancy force decreases the momentum flux
in the jet with height. At some height the momentum flux is zero, and the flow then
reverses and falls down around the core upward flowing jet.

A fountain has a similar dynamical structure to that of a pure jet before reversing
its direction of motion. The reversal of the flow direction changes several dynamical
properties of a fountain. For example, the maximum height a fountain is able to reach
decreases after it reverses. When the jet is initially turned on, the jet fluid entrains the
stationary ambient fluid and reaches an initial maximum height zi . Because the fluid
is denser than the surrounding fluid, once it loses its upward momentum it falls down
around the jet in an annular region adjoining the upward flow. Since the outer-layer
fluid of oppositely directed momentum reduces the inner-layer upward momentum
more than the stationary ambient fluid before the inversion takes place, the final
maximum height zm shrinks after this reversal happens and other properties, such
as velocity and buoyancy in the fountain, change too. The two different maximum
distances, zi and zm, have been measured and the ratio of zi/zm has a mean value
1.43, as reported in Turner (1966).

On the basis of dimensional analysis, Turner (1966) proposed that the final
maximum height zm in a uniform density environment is

zm = Cf M
3/4
0 |F0|−1/2, (1.1)

where Cf is a dimensionless constant determined from experiments, M0 is the initial
momentum flux and F0 is the initial buoyancy flux of the fountain source. The
experimentally determined constant value Cf is observed to vary from 1.70 to 1.85
(Turner 1966; Mizushina et al. 1982; Baines et al. 1990; Bloomfield & Kerr 2000)
under different source conditions.

The solutions of the governing equations of plume motion have been successfully
used to predict the initial height a turbulent fountain reaches before the downflow has
formed (Morton 1959; Bloomfield & Kerr 1998). However, these equations can no
longer be applied once the downflow begins to interact with the upflow. To overcome
this problem, Turner (1966) proposed that it should be possible to set up a detailed
theory of the ‘double’ structure of the fountain in the manner suggested by Morton
(1962) for coaxial turbulent jets.

The ideas presented in Morton (1962) on the rate of entrainment between two
turbulent flows were subsequently used by McDougall (1981) to develop a theoretical
model of an axisymmetric fountain in a homogeneous fluid. This model was based on
a set of new entrainment equations which quantified the mixing between the upflow
and the downflow, and between the downflow and the environment. In addition to
the effects of mixing between the flows, McDougall (1981) also recognized that the
body forces acting on the fluid in the upflow and downflow are ‘very much an open
question’. In an attempt to address this question, McDougall (1981) considered the
two most reasonable formulations of the body forces acting on the fountain, and was
able to predict the final fountain height as well as the width, velocity and buoyancy in
the upflow and downflow. In that investigation, only the predictions of the fountain
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height were compared with experimental data, since measurements of the internal
fountain structure did not become available until the study by Mizushina et al. (1982).

Bloomfield & Kerr (2000) presented a new model of a turbulent fountain which
is based on the ideas developed by McDougall (1981), but in which they considered
an alternative formulation for the entrainment between the upflow and the down-
flow. The set of entrainment equations implementing their entrainment formulation
results in a good prediction on the initial height and a closer prediction to the value
of the final height than the previous theoretical models. We will use the model of
Bloomfield & Kerr (2000) in numerical calculations to estimate the properties of a
turbulent fountain in this study.

1.2. Penetrative entrainment across an interface

Penetrative entrainment is often encountered in nature. Turner (1968) carried
out pioneering experiments on entrainment across a density interface. In these
experiments, the turbulence was generated by oscillating grids located parallel to
and at some distance from the interface. The turbulence generated by the grid decays
with distance from the grid, and Turner made the important conceptual leap of
describing the entrainment in terms of local variables determined at the position of
the interface. He reasoned that the entrainment would depend on the buoyancy step
�g′ = g�ρ/ρ across the interface and, on the turbulence intensity w and length
scale l at the interface. He presented his measurements in terms of a dimensionless
entrainment rate E = ue/w where ue is the measured entrainment velocity, and argued
that E = E(Ri) where Ri is the local Richardson number at the interface defined by

Ri =
�g′l

w2
. (1.2)

For our purposes, it is more convenient to define E in terms of volume fluxes, so
that the entrained volume flux QE is given by

QE = E(Ri)Qint, (1.3)

where Qint is a measure of the turbulence volume flux at the interface, which will
be defined precisely below. Generally, entrainment is reduced as the stability of the
interface increases, so we expect E to be a decreasing function of Ri. Linden (1973),
from a study of the interaction of a vertically propagating vortex ring on an interface,
found E ∝ Ri−3/2, in agreement with the experimental results of Turner (1968) for a
high Péclet-number interface.

Work on the penetrative entrainment across a density interface by discrete
flow structures has considered the impingement by a vortex ring (Linden 1973),
impingement by a buoyant plume (Baines 1975; Kumagai 1984; Cardoso & Woods
1993) and entrainment by a turbulent jet (Larson & Jonsson 1994, 1996; Shy 1995).
In this paper, some of the studies on penetrative entrainment by a buoyant plume
are reviewed and applied since similar dynamic behaviours occur in both the buoyant
plume and the fountain.

Baines (1975) studied a plume or jet impinging on a density interface and showed
that the entrainment rate E was also proportional to Ri−3/2, where

Ri =
�g′bint

w2
int

, (1.4)

where wint and bint are, respectively, the vertical velocity and the radius of the buoyant
plume at the density interface position. Baines (1975) used the Froude number rather
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than the Richardson number to analyse his experimental data, but the two parameters
are interchangeable as (Fr = Ri−1/2). Using the Gaussian distribution of velocity and
radius profiles, he presented the experimental results of 0.4 <Fr < 2.4, which
correspond to 1 <Ri < 36 for the top-hat distribution which is applied in this paper.

Kumagai (1984) studied the same problem, but extended the range of Ri to
0.1 <Ri < 70. He gave an empirical formula for the penetrative entrainment rate to
fit his experimental results (cf. equation (4.5) in his paper) for this range of values of
Ri,

E =
Ri−3/2

1 + 3.1Ri−1 + 1.8Ri−3/2
. (1.5)

When Ri is much larger than unity, the entrainment rate is proportional to Ri−3/2,
as found by Baines (1975). As Ri decreases, the penetrative entrainment rate tends to
approach a constant value. The limit Ri → 0 of (1.5) gives a constant value of 0.56,
but the experimental results of Kumagai (1984) appear to be closer to a constant
of 0.32 when Ri → 0.1. The values given by (1.5) in the limit Ri → 0 may not be
reliable.

Cardoso & Woods (1993) proposed that the mixing at a density interface by a
turbulent plume was proportional to Ri−1, rather than Ri−3/2, over an intermediate
range of Ri, 1.2 <Ri < 25. This model gave a better fit to the results of Kumagai
(1984) over this range of Ri.

In a related study, Larson & Jonsson (1994, 1996) carried out experiments on the
destratification of a two-layer stably stratified fluid by a turbulent water jet. A jet
was discharged vertically downwards in a confined fluid system consisting initially
of a top layer of fresh water and a bottom layer of salt water. They measured the
percentage of the supply kinetic jet energy used for increasing the potential energy
of the fluid system, in order to determine the mixing efficiency in several different
environmental conditions, where the diameter and exit velocity of the jet were varied
together with the density difference between the top and bottom layers. In contrast
to the other studies referenced above, Larson & Jonsson (1994, 1996) used the kinetic
energy at the exit of a momentum jet as the available kinetic energy to calculate the
mixing efficiency rather than the kinetic energy at the density interface. It is, therefore,
difficult to relate their results to the previous work on buoyant plumes.

The penetrative entrainment by a turbulent fountain is similar to that by a jet
or plume. On the basis of a similarity between the two flows, the local Richardson
number in the turbulent fountain at the density interface is assumed to determine the
penetrative entrainment of a fountain.

In this study, we describe a new experimental arrangement to maintain a steady
two-layer stratification and present measurements of the penetrative entrainment
between the density interface due to a turbulent fountain in the steady state. We
restrict attention to flows where Ri < 1.2, which is a parameter range of relevance to
the operation of UFAD systems. The format of this paper is as follows. Section 2
proposes an arrangement for penetrative entrainment measurements, then describes
the flow qualitatively and presents a physical model for the flow. Section 3 describes
the laboratory experiments, techniques to investigate the flow and the experimental
conditions. Section 4 presents experimental results of the steady state and estimates
of penetrative entrainment. Section 5 gives some discussion on characteristics of the
flow, the plume theory and the fountain model used in this study. Finally, § 6 draws
some conclusions and discusses some applications of this study.
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2. Penetrative entrainment measurements
2.1. Arrangement

Certain conditions are necessary for maintaining a steady state in a stratified non-
diffusive fluid. For an incompressible fluid without sources and sinks of mass,
conservation of mass is

Dρe

Dt
= 0, (2.1)

where ρe is the environmental density. In a stably stratified fluid, horizontal density
variations are observed to be small compared with vertical variations, since a small
horizontal difference in the density distribution produces horizontal flow that tends
to homogenize the density distribution at the same elevation. Consequently, except
in isolated regions of high convective activity, such as in a plume or jet, the density
distribution in the steady state ρe is a function of the vertical variable z only

ρe = ρe(z). (2.2)

Then, in a steady state, (2.1) can be rewritten as

w
∂ρe

∂z
= 0. (2.3)

Thus, the conditions required to maintain a steady state are either zero vertical
velocity w = 0 or zero density gradient ∂ρe/∂z = 0 in a space. The space maintaining
steady-state stratification has regions with vertical flow and uniform density, or
stratified regions with no vertical motion. Generally, there are individual layers, each
with uniform density in which there is vertical motion, separated by density interfaces
at which there are no vertical motion.

In order to maintain a steady two-layer stratification in which we could measure
the entrainment, a dense plume source was used to produce a heavy layer at the
bottom of a tank. The turbulent fountain was produced as a momentum jet with
downward momentum, emitted from a source positioned at the same depth as the
plume source as sketched in figure 1. A siphon pipe withdrew the fluid from near the
free surface to keep a constant volume of fluid in the tank. The fountain source is
supplied with the fluid of density ρf .

In this arrangement, there are two constant continuous injection sources in the
space. Two-layer stratification is observed in the steady state, with w = 0 but
∂ρe/∂z �= 0 at the density interface. The fluids of the two layers in the environment
do not penetrate the interface except in the plume and fountain where (2.3) is invalid.

In the upper and lower layers, ∂ρe/∂z = 0 and w �= 0 since the fluid is driven by
the supplies from the plume and the fountain. The fluid motion in the environment
outside the plume and the fountain is upward in both layers. The supply from the
plume arrives at the bottom of the tank and then lifts the existing fluid upward. The
fluid in the lower layer is entrained by the fountain across the density interface. The
fluid in the fountain supplies the upper layer from the base. The system achieves a
steady two-layer stratification when the volume flux in the plume and the entrained
volume flux by the fountain at the density interface balance each other. Thus, this
arrangement provides a direct measure of the penetrative entrainment. It is also
necessary for the buoyancy fluxes in the two layers to balance in the steady state. As
will be shown in § 2.3, this condition provides an alternative way of calculating the
penetrative entrainment.
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Figure 1. A sketch of the experimental arrangement for determining the penetrative entrained
volume flux QE due to a momentum jet (fountain) at a density interface in the steady state.
A dense plume is on the left-hand side, a downward fountain is on the right-hand side and a
siphon pipe entrance is positioned at the free surface to withdraw fluid in the tank. The figure
also shows a schematic of the positions of lighting intensity windows on the tank.

2.2. Description of the flow

Before presenting the theoretical model and the detailed experimental results, the
laboratory experiment and the physical ideas are described in qualitative terms. The
basis for the quantitative model will then become clear.

As the plume and the fountain are turned on, the plume fluid (salt solution)
arrives at the bottom of the tank and forms a dense layer in an initially fresh-water
environment.† The fountain arrives at the interface, at the top of this dense layer,
then penetrates into it for some distance, and rises back to the upper layer since it
is less dense than the lower layer. The process of the fountain penetrating into the
dense layer brings a certain volume of the fluid in this layer to the upper layer. This
penetrative entrained fluid, mixed with the fluid in the fountain, rises and modifies
the properties of the upper layer.

A series of transient flow images, from Experiment 5 (which will be described in § 3),
obtained at 2, 8, 14 and 20 min, respectively, after turning on the plume and fountain
sources are shown in figure 2. At the beginning of the experiment, the plume supplies
the lowest density fluid to the lower layer since the ambient fresh-water environment,
which is entrained into the plume, has the smallest density at this time. The turbulent
fountain also propagates the furthest vertical distance in the fresh-water environment
initially, since there is the smallest negative buoyancy force.

† In our experiments, the density of the fountain supply fluid is the same as that initially in the
tank (they are both fresh water). However, this condition is not necessary. If the fountain source
initially has a different density, the same steady state is achieved, but it is first necessary to replenish
the fluid in the tank with the fountain fluid.
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Figure 2. Four transient images were taken from Experiment 5. There is a 6 min interval
between each two consecutive images. (a), (b), (c), (d) were taken at 2, 8, 14 and 20min,
respectively, after the plume and the fountain sources are switched on. All images were
corrected for variations in the background lighting.

The penetration into and subsequent rise from the heavy lower layer of the turbulent
fountain entrains some of the fluid into the upper layer. The density of the upper
layer is modified (increased) by this entrained fluid. As the density of the upper layer
increases, the downward momentum of the fountain is reduced more quickly by the
buoyancy force and so the fountain penetrates a shorter distance into the lower layer.
As a result, the interface moves upward and the densities in both the layers increase
with time until steady state is reached.

When the volume fluxes and buoyancy fluxes balance between two layers and in
the space, a steady two-layer stratification is maintained. Figure 3(a) shows an image
of the steady-state flow which was taken at 120 min after turning on the plume
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Figure 3. (a) An image taken from Experiment 5 in tank 2, after the experiment had run
for 120 min. The image was corrected for variations in the background lighting. The plume
is on the left-hand side and the fountain is on the right-hand side, and we can see the two
layers produced by them. (b) The corresponding reduced gravity profile of the steady-state
flow. There are two different layers established in the tank. The lower layer is well mixed, but
the upper layer retains some weak vertical stratification.

and fountain sources in Experiment 5. Figure 3(b) shows the corresponding reduced
gravity profile, and an approximate two-layer stratification is observed in this figure.
The lower layer is well mixed, but the upper layer retains some weak stratification.
In the following section, a theoretical steady-state two-layer model will be discussed.

2.3. Theoretical model

In the steady state, the buoyancy input in the space balances the buoyancy extracted,
as shown in figure 1, i.e.

B = g′
1Qout, (2.4)
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where B is the buoyancy flux of the plume, and Qout is the volume flow rate extracted
from the tank. The reduced gravity of the upper layer is g′

1

g′
1 =

ρ1 − ρf

ρf

g, (2.5)

where ρ1 is the density of the upper layer, ρf is the density of the fluid from
the fountain source and is used as the reference density, and g is the acceleration
due to gravity. The choice of ρf as the reference density implies that the fountain
introduces no buoyancy (g′

f = 0). Provided the Boussinesq approximation is valid
�ρ (= ρ1 − ρf ) � ρf , the choice of the reference density is unimportant. In the
laboratory experiments, the buoyancy flux is produced by a small volume flux Qs of
dense fluid. The buoyancy flux is B = g′

sQs where g′
s is the reduced gravity of the salt

solution supplying the plume source.
Volume conservation in the space is

Qout = Qf + Qs, (2.6)

where Qf is the volume flux from the fountain source. Since Qs � Qf in these
experiments, we approximate it by assuming

Qout ≈ Qf , (2.7)

so hereinafter Qf is used instead of Qout.
Volume conservation for the lower layer is

Qp = QE, (2.8)

where Qp is the volume flux of the plume at the interface and QE is the penetrative
entrained volume flux from the lower layer to the upper layer by the fountain. As
discussed above, because the volume exchange between two layers occurs only in the
plume and the fountain regions, these two quantities have to balance in the steady
state.

The entrainment flux QE can be determined in terms of the plume properties by
applying the plume theory of Morton, Taylor & Turner (1956). This gives the volume
flux as

Qp = Qp(h, Br ) = CB1/3
r h5/3, (2.9a)

and the reduced gravity difference between the two layers as

g′
2 − g′

1 = �g′(h, Br ) =
1

C
B2/3

r h−5/3, (2.9b)

where g′
2 is the reduced gravity of the lower layer

g′
2 =

ρ2 − ρf

ρf

g, (2.10)

h is the depth between the density interface and the origin of the plume, Br is the
buoyancy flux of the plume in the upper layer and C is the universal plume constant
C = 6α/5(9α/10)1/3π2/3, where α is the entrainment constant of the plume. Here we
use α = 0.083 which is suggested by Turner (1986). Since, in steady state, the density
of the upper layer is larger than the initial value, Br = (g′

s − g′
1)Qs . The value of

g′
s � g′

1, so Br is only slightly smaller than B . Equations (2.9a) and (2.9b) show that
the reduced gravity step between these two layers and the plume volume flux at the
interface depend on the buoyancy flux of the plume and the distance between the
plume source and the density interface.
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The reduced gravity of the plume at the interface is the maximum value that can
supply the lower layer, therefore it penetrates the interface, arrives and spreads out
at the bottom of the tank and then lifts up the previously occupying fluid. When the
flow reaches steady state, the plume introduces a constant maximum density fluid to
the lower layer. Eventually, the density of the lower layer is equal to this supplying
density and the previous fluid of lower density in this layer is removed from the top
of the layer by penetrative entrainment of the turbulent fountain at the interface.

The reduced gravity of the fountain source g′
f is smaller than the reduced gravity

of the upper layer g′
1 in the steady state, so the momentum of the fluid from the

fountain source decreases owing to the buoyancy force as it propagates downwards.
The residual momentum causes the fluid in the fountain to penetrate the density
interface and then entrain a certain amount of the fluid from the lower layer to the
upper layer. The fluid in the fountain reaching the interface consists of the source fluid
Qf plus the upper-layer fluid entrained into the fountain QEU . This fluid penetrates
the lower layer for some distance before rising back up into the upper layer as a
result of the buoyancy forces. As it does so, the fountain entrains lower-layer fluid
with the reduced gravity g′

2 and brings it into the upper layer. The mixing of these
three fluids of different properties determines the reduced gravity of the upper layer,
i.e.

g′
1(Qf + QEU + QE) = g′

f Qf + g′
1QEU + g′

2QE. (2.11a)

Since, by definition, the reduced gravity g′
f from the fountain source is zero, we

simplify (2.11a) to obtain

g′
1 =

g′
2QE

Qf + QE

. (2.11b)

Therefore, from the values of g′
1 and g′

2, both measured in the experiments, and a
control parameter Qf , the penetrative entrained volume flux QE can be determined
from (2.11b) as

QE =
g′

1Qf

g′
2 − g′

1

. (2.12)

The reduced gravity of the lower layer is determined by entrainment of the fluid
from the upper layer into the plume and the buoyancy flux of the plume source, i.e.

g′
2Qp = B + g′

1(Qp − Qs). (2.13)

Again, Qs will be neglected in the analysis since Qs � Qp , so

g′
2Qp ≈ B + g′

1Qp. (2.14)

Using (2.4), (2.7) and (2.8), we have the left-hand side of (2.14) as

g′
2Qp = g′

2QE, (2.15)

and the right-hand side of (2.14) as

B + g′
1Qp = g′

1Qout + g′
1QE = g′

1Qf + g′
1QE = g′

1(Qf + QE). (2.16)

Therefore, (2.14) reproduces (2.11b).
Substitute (2.4) and (2.8) into (2.14) to obtain

g′
2 = B

(
1

Qp

+
1

Qf

)
= B

(
1

QE

+
1

Qf

)
. (2.17)
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Thus, the reduced gravity of the lower layer depends on the plume buoyancy flux,
the source volume flux of the fountain and its entrained volume flux at the interface
(or the supply volume flux from the plume at the density interface). It is noted that
the volume flux from the fountain source has the same impact as the penetrative
entrainment volume flux at the interface does on the reduced gravity of the lower
layer.

The reduced gravity difference between the two layers �g′ is estimated by (2.4) and
(2.17), i.e.

�g′ = g′
2 − g′

1 =
B

QE

=
B

Qp

, (2.18)

since Qp = QE , see (2.8). This reduced gravity step only depends on the buoyancy
flux of the plume and the penetrative entrainment volume flux at the interface.

Therefore, there are three different formulae to estimate the value of the penetrative
entrained volume flux QE . These are:

(a) the penetrative entrained volume flux equal to the supply volume flux in the
plume at the density interface (2.8) and the plume theory (2.9a); this estimate requires
measuring the interface depth h and the buoyancy flux Br of the plume relative to
the upper layer in the steady state;

(b) the penetrative entrainment across the density interface by the fountain (2.12);
this estimate requires measuring the reduced gravity g′

1, g′
2 of the two layers and the

source volume flux Qf of the fountain; and
(c) the mixing in the plume within the upper layer (2.18); this estimate requires

measuring the density step �g′ between the two layers and the buoyancy flux B from
the plume.
In § 4, the values of the penetrative entrained volume fluxes obtained from these three
different measurements are presented and compared.

3. Laboratory experiments
Experiments were conducted in two different Plexiglas tanks: tank 1 was 28 cm

wide, 58.5 cm long and filled with fresh water to a depth 25.0 cm; tank 2 was 15.0 cm
wide, 30.0 cm long and filled with fresh water to a depth 23.0 cm. A plume source
nozzle and a fountain source nozzle were both placed at the same elevation, 1 cm
below the free surface. The coordinate position z = 0 was set at the height of the
sources and z was positive downward as depicted in figure 1. A siphon pipe, 1.27 cm
in diameter and connected to another constant-head tank, was placed in the Plexiglas
tank to keep a constant volume of fluid in the tank. The end of the siphon pipe was
positioned just below the free-surface level of the Plexiglas tank.

The plume nozzle with 0.5 cm diameter is the same as that used in the experiments
of Lin & Linden (2002), and the details of the plume design can be found in Hunt &
Linden (2001). The fountain nozzle, a straight tube 1.27 cm in diameter, is made of
Plexiglas and its exit is attached with a piece of fine wire mesh (approximate aperture
size 0.1 cm × 0.1 cm) to promote disturbance of the flow.

The density measurement technique, which was used in the experiments of Lin &
Linden (2002), is based on the lighting intensity attenuation technique and the details
of this technique are given in Cenedese & Dalziel (1998). Dye was added to the salt
solution and the water from the fountain nozzle was undyed. The light attenuation
due to the dye in the salt solution is related to the density of the solution. Before
running experiments, we used the same lighting as in the experiments to record images
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Run B Qf Mf Running time (min) Tank

1 83.97 13.8 200.44 90 1
2 85.73 21.7 495.64 100 1
3 48.60 13.8 200.44 100 1
4 48.60 21.7 495.64 100 1
5 83.07 13.8 200.44 360 2
6 83.07 21.7 495.64 120 2
7 45.07 13.8 200.44 300 2
8 45.07 21.7 495.64 110 2

Table 1. The 8 different experimental conditions. The buoyancy flux of the plume source B
was varied by changing the concentration of salt solution, the volume flux of the fountain
Qf was measured by an inline flow meter and the momentum flux of the fountain Mf was
estimated by (3.2). The running time of the experiment and the tank which was used are given
in the table.

of sample solutions, and measured their densities with an Anton Paar density meter
which has an accuracy of 5 × 10−6 g cm−3. We used the light intensities of the sample
solutions and their measured densities to interpolate the density distributions in the
tank via experimental images. Experiments were recorded directly through a Cohu
4912 CCD camera into a microcomputer hard disk at 1 min intervals.

The dye intensity was measured in prescribed windows. The window size in tank
1 was 2 pixels high by 38 pixels wide (about 0.2 cm high by 5.5 cm wide), and in
tank 2 was 2 pixels high by 30 pixels wide (about 0.1 cm high by 2.0 cm wide). The
stratification in the tank environment was found to be generally horizontally uniform
by comparing the lighting intensity at different horizontal locations at the same
elevation outside both the plume and the fountain. In order to obtain vertical density
profiles, a set of aligned windows was used. The positions of the windows used for
measuring the lighting intensity in the tank are depicted schematically in figure 1. Each
two adjacent windows have a 0.5 cm vertical interval between them. This measured
density profile is believed to represent the stratification of the entire tank environment.

3.1. Experimental conditions

Salt solution was used as the plume supply fluid and fresh water as the fountain
supply fluid. Different buoyancy fluxes B of the plume source, volume fluxes Qf and
momentum fluxes Mf of the fountain in 8 different experiments are given in table 1,
along with the running time of the experiments and the tank used. The buoyancy flux
of the plume source B was varied by changing the concentration of the salt solution,
from 1.05 g cm−3 to 1.1 g cm−3, and the plume source had a small fixed volume flux
0.9 cm3 s−1 in all the experiments. The volume flux of the fountain Qf was regulated
by an inline flow meter. Note that Qs/Qf < 0.07, so the small source volume flux Qs

of the plume is negligible in the analysis. Nevertheless, when the data are analysed
they are corrected for the non-zero values of Qs .

The sources were positioned where the fountain and the plume did not interact
with the sidewalls. The momentum fluxes Mf were controlled below 533 cm4 s−2 since
the turbulent fountain hit the bottom of the tank for larger values of Mf . The 8
experiments were chosen to represent two sets of similar parameters B , Qf and Mf

in two different tanks (see table 1).
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A fixed cross-section area fountain source was used. We assumed the velocity profile
U (r) at the nozzle exit was parabolic and given by

U (r) = 2
Qf

A

(
1 − 4r2

D2

)
, (3.1)

where A = 1.27 cm2 was the cross-section area, πD2/4, and D = 1.27 cm was the
diameter of the fountain nozzle source.

The momentum flux Mf was

Mf =

∫ D/2

0

2πrU 2(r) dr =
4

3

Q2
f

A
. (3.2)

The Reynolds number at the fountain nozzle,

Re =
w0 D

ν
, (3.3)

varied from 1380 to 2150 when the flow rate varied from 13.8 cm3 s−1 to 21.7 cm3 s−1.
Here, w0 = Qf /A is the mean exit velocity from the nozzle and ν is kinematic
viscosity of water. The Reynolds number at the plume nozzle was 230 when the flow
rate was fixed at 0.9 cm3 s−1.

3.2. The time of attaining steady state

The time to attain steady state for the lower layer depends on the relative ratio of
the lower-layer volume size and the penetrative entrained volume flux (which is equal
to the volume flux supply from the plume to the lower layer in the steady state).
The time of replacing the upper layer depends on the volume flux of the fountain
source and the volume of the upper layer when a pure plume, without any volume
flux from the source, is considered. Since the penetrative entrained volume flux across
the density interface by the turbulent fountain is equal to the volume flux of the fluid
in the upper layer entrained into the plume, the replacement of the upper layer is
less efficient than that of the lower layer. A large portion of the fluid supplied from
the fountain to the upper layer is entrained into the plume in this layer and only
the remainder of it displaces the fluid in the upper layer. The fluid motion outside
the plume and the fountain is upward in both layers, but with two different vertical
velocities.

From our experimental observations, the steady state is attained after the fountain
source injects 8 to 20 times as much fluid as the tank volume. Figure 4 shows
the process of Experiment 5 reaching steady state. The evolution of the vertical
reduced gravity distributions in the environment were measured from the start of
the experiment to 100 min, at 10 min intervals. This experiment took about 100 min
to reach steady state. The volume flux from the fountain nozzle was 13.8 cm 3 s−1 in
tank 2, so the fountain source replenished the fluid in the tank about 8 times.

Figure 5 shows the profiles of another experiment, Experiment 7, approaching
the steady state. The evolution of the vertical reduced gravity distributions in the
environment were measured from the start of the experiment to 160 min, at 20 min
intervals. This experiment took about 160 min to reach steady state.

Although Experiment 7 had the same supply volume flux and tank size as
Experiment 5, the former took longer to reach steady state. The time for a system
reaching steady state requires that both layers reach steady state. Since a lower
buoyancy input in Experiment 7 induces a deeper upper layer, a fountain takes
longer to replace the fluid in this deeper layer. Note that in both of these examples,
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Figure 4. Transient reduced gravity profiles of Experiment 5 measured by the light attenuation
technique. The profiles were measured from 0 to 100 min, at 10 min intervals, after turning
on the plume and fountain sources. The upper layer has a weak vertical stratification and the
lower layer is well-mixed in the transient state.
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Figure 5. Transient reduced gravity profiles of Experiment 7 measured by the light attenuation
technique. The profiles were measured from 0 to 160 min, at 20 min intervals, after turning on
the plume and fountain sources.
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Figure 6. The reduced gravity profiles of the steady-state flow taken from Experiment 5. The
profiles were measured after the experiment had run from 260 to 360 min, at 10 min intervals.

the shape of the profile is established relatively quickly and the densities of both
layers simply increase until the steady state is reached.

4. Results
4.1. Steady-state measurements

A typical experiment reaches steady state between 1.5 and 3 h depending on the
volume flux from the fountain and size of the tank. When the reduced gravity profiles
varied less than 0.2 cm s−2 and the interface depth difference was less than 0.5 cm (the
spatial resolution of the profile) over 10 successive 1 min intervals, we deemed that
the experiment had reached steady state. The reduced gravity value of 0.2 cm s−2 was
chosen as it corresponds to the experimental error in determining g′.

Figure 6 shows the reduced gravity profiles of the steady-state flow in Experiment 5
from 260 to 360 min, at 10 min intervals. The reduced gravity profiles fluctuate
around the mean profile. Figure 7 shows the values of the reduced gravity in
both layers, the reduced gravity step and the interface depth of Experiment 5 from
the start of the experiment until it was ended. In this experiment, the upper-layer
reduced gravity fluctuates around 4.7 cm s−2 with a deviation amplitude 0.3 cm s−2.
The lower layer reduced gravity fluctuates back and forth around 7.3 cm s−2 with a
deviation amplitude of 0.4 cm s−2. Both layers have similar deviations. The interface
depth fluctuates around 7.5–8.5 cm with an average depth 7.8 cm. The reduced gravity
step has a mean value 2.7 cm s−2 with a deviation amplitude of about 0.2 cm s−2.
The deviations of measurements of the reduced gravity are within the experimental
error and measured values of the interface depth have reasonable variations, less
than 8%.



40 Y. J. P. Lin and P. F. Linden

0 100 200 300

2

4

6

8

g′1

(a)

100 200 3000

2

4

6

8
(b)

100 200 3000

2

4

6

8

Time (min)

∆g′

(c)

100 200 3000

5

10

15

20

Time (min)

z
(cm)

(d)

g′2

Figure 7. (a) and (b) present the values of the reduced gravity in both layers, (c) the reduced
gravity step and (d) the interface depth in Experiment 5 as functions of time. Estimates of the
entrainment rate E were made from 355 to 360 min, when the system appeared to be steady.

Figure 8 shows the reduced gravity profiles of the steady-state flow in Experiment 7
from 200 to 300 min, at 10 min intervals. Figure 9 shows the values of the
reduced gravity in both layers, the reduced gravity step and the interface depth
of Experiment 7. The upper layer reduced gravity fluctuates around 3.4 cm s−2 with
a deviation amplitude 0.3 cm s−2 in the steady state. The lower-layer reduced gravity
fluctuates around 4.7 cm s−2 with a deviation amplitude 0.4 cm s−2. The interface depth
fluctuates around 9.5–11.5 cm with an average depth 10.4 cm. The reduced gravity step
has a mean value 1.3 cm s−2 with a deviation amplitude 0.2 cm s−2. The deviations of
the reduced gravity measurements are within the experimental error, but the interface
depth measurements have larger variations, about 10%.

4.2. Estimate of penetrative entrained volume flux

The measurements of the reduced gravity g′
1 and g′

2 in the upper and lower layers,
and the interface depth h are reported in table 2. The reduced gravity profiles
of the last 6 min before the experiments terminated were used to estimate the
penetrative entrained volume flux. The values in table 2 are the average values of
those six consecutive profiles, and each two consecutive profiles have a 1 min interval.
These values are obtained in the steady state, except for Experiment 1. Although
Experiment 1 did not attain steady state, it achieved a quasi-steady state in which the
values of reduced gravity and the interface depth changed gradually. We include this
set of experimental results as it gives values consistent with the other experiments.
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Figure 8. The reduced gravity profiles of the steady-state flow taken from Experiment 7. The
profiles were measured after the experiment had run from 200 to 300 min, at 10 min intervals.

Run g′
1 g′

2 h (cm) QE1 (cm3 s−1) QE2 (cm3 s−1) QE3 (cm3 s−1)

1 3.1 5.6 7.6 21.3 18.4 25.4
2 3.5 4.9 15.3 65.7 60.7 64.5
3 3.5 5.7 8.4 21.9 22.2 20.8
4 2.9 3.8 15.5 55.5 60.7 45.6
5 5.0 7.7 7.9 23.0 27.0 26.6
6 3.7 4.8 13.0 48.8 67.7 60.5
7 3.1 4.3 10.5 30.5 35.8 35.0
8 2.4 3.2 14.4 49.2 75.0 60.4

Table 2. The experimental results of the reduced gravity values in the upper and lower layers,
the interface depth and the penetrative entrained volume fluxes through the density interface
in 8 different runs.

The estimates of the penetrative entrained volume fluxes QE by a turbulent fountain
across the density interface are shown in table 2. Three different approaches to estimate
the penetrative entrained volume flux have been described in § 2.3, and now we discuss
how these values are estimated from the experimental results.

Figure 10 shows the average reduced gravity profiles of the eight different
experimental cases (as in table 1). From these profiles, the upper-layer reduced gravity
g′

1 is then obtained by averaging the reduced gravity values above the interface and
g′

2 by averaging the lower-layer reduced gravity. The interface position is selected
where its reduced gravity difference with the upper-layer reduced gravity is 80% of
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Figure 9. (a) and (b) present the values of the reduced gravity in both layers, (c) the reduced
gravity step and (d) the interface depth in Experiment 7 as functions of time. Estimates of
the entrainment rate E were made from 295 to 300min, when the system appeared to attain
steady.

the reduced gravity difference between the two layers, i.e.

h = z(g′
int) = z(g′

1 + 0.8�g′), (4.1)

where �g′ = g′
2 − g′

1.
In experiments there is no clear-cut interface, but rather there is an intermediate

region having a strong gradient and ranging in thickness from 2 to 3 cm. The interface
position was selected as close as possible to the depth where the value of the lower-
layer reduced gravity was attained, since theoretically we expect a uniform lower-layer
reduced gravity in the steady state, as observed in the experimental results.

Theoretically, the reduced gravity of the lower layer is identical to the reduced
gravity of the plume at the interface, that is, the interface is where the plume has the
lower-layer reduced gravity. In the experimental data, 80% of the reduced gravity
difference from the upper-layer reduced gravity is chosen as the interface reduced
gravity rather than the lower-layer reduced gravity value since using the average
lower-layer reduced gravity sometimes over-estimates the interface position. However,
the difference between these two positions was observed to be less than 0.5 cm.

As an example, figure 11 shows the measured average reduced gravity profile of
Experiment 7 along with the estimated values of the upper-layer, lower-layer reduced
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Figure 10. The average reduced gravity profiles of 8 experimental cases whose
environmental conditions are presented in table 1.

gravity and the interface depth determined from this profile. A uniform upper-
layer reduced gravity is not as clear as that in the lower layer, and a slight stable
stratification forms in this layer. In our analysis, we used the average reduced gravity
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Figure 11. Experimental measured reduced gravity values in Experiment 7 (∗ marks) along
with the estimated reduced gravity values (dashed line) in two layers and the estimated interface
position.

value of the upper layer, and the deviation between the average reduced gravity and
the upper-layer reduced gravity is less than 0.3 cm s−2.

Three different measurements of the penetrative entrained volume flux QE are
obtained from (2.8) and the plume theory (2.9a) (denoted as QE1)

QE1 = Qp = CB1/3
r h5/3, (4.2)

from the fountain volume flux using (2.12) (denoted as QE2)

QE2 =
g′

1Qf

�g′ (4.3)

and from measurements of the reduced gravity of the layers and the buoyancy flux
from the plume using (2.18) (denoted as QE3)

QE3 =
B

�g′ . (4.4)

In order to use plume theory to measure QE1, it is necessary to determine the virtual
origin of the plume. The equations to calculate the virtual original height zv in this
study are given by Hunt & Kaye (2001). The virtual origin heights were calculated
to be zv = 1.2 ∼ 1.4 cm depending on different plume source conditions. From the
plume equation (2.9) and the virtual original height, the volume flux Qp in the plume
at the density interface is expressed as

QE1 = Qp = CB1/3
r (h + zv)

5/3. (4.5)
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QE1 was used as a reference value for comparing deviations between the measured
entrainment volume fluxes. The variations between the values estimated by these three
methods are within 50%, but most data are within 20%.

Theoretical estimated values of QE1 have a high sensitivity on the values of the
estimated interface position since the volume flux depends on h5/3. Consequently, the
determination of the interface depth is important for the penetrative entrainment
values determined by this method. The values QE2 and QE3, determined from (2.12)
and (2.18), are sensitive to the values of the reduced gravity step between two layers,
especially when the reduced gravity step is small. Supposing an inherent experimental
measurement error on determination of the reduced gravity step by the lighting
intensity attenuation technique is (�g′

err = 0.2 cm s−2), the large reduced gravity step
in Experiments 1 (2.5 cm s−2) or 5 (2.4 cm s−2) does not have such a large error as
the small reduced gravity step in Experiments 4 (0.9 cm s−2) or 8 (0.8 cm s−2). The
former cases may result in 8 ∼ 9% error since the inherent measurement error is
small compared to the reduced gravity step value, but the latter ones result in a larger
error of about 25 ∼ 30%.

4.3. Estimate of penetrative entrainment rate

The fountain model proposed by Bloomfield & Kerr (2000) is applied here to estimate
the values of the radius bint, the vertical velocity wint and the volume flux Qint in the
fountain at the density interface before the fountain reverses at its maximum depth.
The fountain model is used here without considering the reversal of the fountain
which changes some dynamical properties in the fountain. The opposite direction
momentum of the outer annular jet modifies the momentum of the inner core jet
after the reversal. The discussion on this phenomena was presented in Turner (1966)
and Bloomfield & Kerr (2000). In the present experiments, the outer annular jet does
not enclose the core jet over its full depth since the fluid in the outer annular jet
spreads laterally after it rises back to the upper layer. The entrained fluid by the
turbulent fountain is heavier than the fluid in the upper layer. Therefore, the influence
of the outer annular jet on the core jet in this experimental apparatus is not as
significant as that in a normal fountain structure.

The fountain model which was used to estimate the local values at the interface in
the fountain has a Gaussian entrainment constant proposed by Bloomfield & Kerr
(2000) αg =0.06 (0.06 ×

√
2 for the top-hat distribution), which lies between the plume

value 0.083 (Turner 1986) and the jet value 0.054 (Albertson et al. 1950). The initial
conditions, the volume flux Qf and the momentum flux Mf from the fountain nozzle,
and the environmental conditions, the reduced gravity in two layers, were applied in
the calculations.

Table 3 shows the local Richardson number values, the velocity, the radius and
the volume flux at the density interface obtained from the numerical calculations of
the fountain model, and the penetrative entrainment rates E at the density interface
by three different methods. The penetrative entrainment rate E1 = QE1/Qint, which
is estimated by the plume theory and the fountain model, results in the smallest
variations in these three approaches, while E2 = QE2/Qint and E3 = QE3/Qint have
similar amounts of variability.

In these experiments, the local Richardson numbers are small, Ri < 1.2, at
the density interface. In this range of Richardson numbers, an approximately
constant value 0.65 (±0.17) of the penetrative entrainment rate was observed in our
experimental data of both steady state and quasi-steady state. Figure 12 shows plots
of the penetrative entrainment rates from the three independent estimates against
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Run Ri Qint (cm3 s−1) wint (cm s−1) bint (cm) E1 E2 E3

1 0.49 37.0 3.1 1.9 0.58 0.50 0.69
2 0.70 93.7 2.6 3.4 0.70 0.65 0.69
3 0.72 39.0 2.6 2.2 0.56 0.57 0.53
4 0.38 95.7 2.8 3.3 0.58 0.63 0.48
5 1.17 36.8 2.2 2.3 0.63 0.73 0.72
6 0.29 83.9 3.3 2.9 0.58 0.81 0.72
7 0.90 44.4 1.9 2.7 0.69 0.81 0.79
8 0.22 91.5 3.3 3.0 0.54 0.82 0.66

Table 3. The local values of the Richardson number, the impinging volume flux, the vertical
velocity and the radius at the density interface estimated by the fountain model. The penetrative
entrainment ratios by three different estimation approaches are shown as well.
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Figure 12. The penetrative entrainment rate E1, E2 and E3 by three estimation approaches
against Richardson number are presented in (a), (b) and (c). (d) The scatter range of the
penetrative entrainment rate between these three approaches against the Richardson number
and the solid line is calculated from (1.5) from penetrative entrainment of a buoyant plume
by Kumagai (1984).

the Richardson number. The penetrative entrainment rate scatters around E = 0.65
in each case. The penetrative entrainment rate E1 has the smallest scatter (standard
deviation= 0.06). The penetrative entrainment rates E2 and E3 have similar standard
deviation values of 0.12 and 0.10, respectively. The data shown in figure 12 are the
entrainment rates determined by the three methods, and the error has reflected the
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total scatter in the values. The solid line in figure 12(d) is obtained from (1.5) which
presents the penetrative entrainment rate of a buoyant plume over the same range
of Richardson numbers by Kumagai (1984). The results of Baines, Corriveau &
Reedman (1993) show a larger scatters of entrainment rate, but they are of a similar
scale to our results (see figure 6 of their paper.)

5. Discussion
5.1. Characteristics of the flow

The fluid in the lower layer is supplied by the plume and withdrawn by the penetrative
entrainment of the fountain. The two interface fluxes must balance in the steady state.
The supply fluid from the plume spreads out as a layer at the bottom of the tank and
the penetrative entrainment by a fountain entrains a certain amount of dense fluid in
the lower layer into the upper layer. The fluid in the upper layer is supplied by the
reversal of the fountain at the base of the layer, and removed by the siphon pipe at
the top of the tank and also by entrainment into the plume. The sum of the latter
two elements balances the supply in this layer in the steady state.

The fluid in the upper layer is supplied by the penetrative entrainment of the
fountain at the bottom of the layer. A uniform upper-layer reduced gravity is not
observed as clearly as that in the lower layer; instead the experiments show that a
slight stable stratification forms in this layer. The cause of this stable stratification is
probably the turbulent fluctuations at the density interface. If the reduced gravity of
the lower layer is constant and the fountain entrains at a constant rate, the supply fluid
to the upper layer should have a constant reduced gravity. However, if the penetrative
entrained volume flux at the density interface has fluctuations, the reduced gravity of
the fluid entering the upper layer will vary, leading to a stable stratification in the
upper layer.

Different properties from the plume and fountain sources produce different flow
patterns. A large source volume flux Qf from the fountain source induces a small
reduced gravity in the upper layer in the steady state when the other conditions are
fixed. A large buoyancy flux B from the plume source produces high reduced gravity
values in both layers. Increasing the momentum flux Mf from the fountain source
increases the interface depth and decreases the buoyancy contrast across the interface.

The buoyancy flux of the plume source and the penetrative entrained volume flux
at the density interface by the fountain determine the magnitude of the reduced
gravity step. A larger penetrative entrained volume flux across a density interface
induces a smaller reduced gravity step. When the penetrative entrained volume flux is
infinitely large, there is no density interface and the entire space is well mixed. Hence,
if a fountain is supplied by a very high momentum flux, this momentum promotes
complete mixing in the space (Hunt, Cooper & Linden 2001).

5.2. Plume theory

Plume theory (2.9b) can be applied to calculate the reduced gravity step between two
layers as

�g′
p = �g′(h, Br ) =

1

C
B2/3

r (h + zv)
−5/3, (5.1)

in order to compare the differences between the theoretical estimations and the
experimental measurements. The values of the reduced gravity step determined from



48 Y. J. P. Lin and P. F. Linden

Run �g′
p (cm s−2) �g′

pe (cm s−2) g′
1c (cm s−2) g′

1 (cm s−2)

1 3.0 2.5 5.7 3.1
2 1.3 1.4 3.8 3.5
3 2.1 2.2 3.3 3.5
4 0.8 0.9 2.2 2.9
5 2.8 2.7 5.7 5.0
6 1.5 1.1 3.7 3.7
7 1.4 1.2 3.1 3.1
8 0.9 0.8 2.0 2.4

Table 4. Two sets of values of the reduced gravity step values at the density interface and the
reduced gravity values that the upper layer should attain in the steady state. The reduced gravity
step values at the density interface by the plume theory and the experimental measurements
are also given. The estimated reduced gravity values that the upper layer should attain in the
steady state with the measured values in the laboratory are presented to see the differences
between them.

experimental results are obtained by

�g′
pe = g′

2 − g′
1, (5.2)

where g′
1 and g′

2 are the average measured values in table 2.
Table 4 presents these two sets of the reduced gravity step at the density interface

(�g′
p and �g′

pe). In general, the values of the reduced gravity step between the density
interface calculated by the plume theory are in good agreement with the experimental
results. The maximum difference in these experiments is 0.5 cm s−2, and most of
experimental results are within 0.2 cm s−2.

Table 4 also shows the estimated reduced gravity values g′
1c, which the upper layer

should attain in the steady state (see (2.4) and here the small volume flux from the
plume source Qs is retained to obtain a more accurate value),

g′
1c =

B

Qout

=
B

Qf + Qs

, (5.3)

and experimental measured values g′
1 in the upper layer. Obviously, Experiment 1 did

not achieve a steady state. The rest of the experimental data and theoretical values
agree to within 0.7 cm s−2 (Experiment 4) and most of the data are within 0.3 cm s−2.

5.3. Fountain model

The magnitudes of the final depth which a turbulent fountain is able to reach in the
steady state, zmc estimated by the fountain model of Bloomfield & Kerr (2000) and
zme observed from the experiments, are given in table 5. The numerically calculated
values of the final depth are where the downward momentum is reduced to zero.
The experimental values are determined from the images such as those in figure 13.
Comparing the intensity variations below the fountain source nozzle, we take the
final depth as the maximum distance below the fountain source at which fountain
fluid appears.

The vertical penetrative depth hd (=zme − h) of a turbulent fountain into the lower
layer was observed to be proportional to the local radius bint of the fountain at the
density interface (cf. figure 13). This feature was consistent in all of our experiments.
This self-similar shape of penetration by a turbulent fountain is similar to that by a
buoyant plume reported by Baines (1975).
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Run zmc (cm) zme (cm)

1 11.3 10.4
2 20.3 21.3
3 11.2 11.3
4 22.7 21.8
5 9.4 11.0
6 19.7 18.1
7 12.7 14.1
8 24.4 20.1

Table 5. The final depths of the fountain are determined from the numerical fountain model
zmc and observed in the experiments zme .

 

(a)

(b)

hd

zme

hd

zme

Figure 13. The vertical penetrative depth hd into the dense lower layer by a fountain is
roughly proportional to the radius bint of the fountain at the density interface. (a) The initial
momentum of the fountain is small, the penetrative depth is short and so is the radius of the
fountain at the interface. The image was taken in the steady state of Experiment 5. (b) The
initial momentum of the fountain is large, the penetrative depth is long and so is the radius
of the fountain at the interface. The image was taken in the steady state of Experiment 6.
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Shy (1995), from his experimental data, showed the relationship between the
dimensionless penetration depth (Pd = hd/2bint) and the Richardson number as

Pd = KRi−1, (5.4)

where K = 0.72 is an experimentally determined constant. This relationship is not
observed in our experimental results, maybe because the Richardson numbers in our
experiments are all smaller than 1.2. However, our results are consistent with the
maximum value of Pd , about 1, reported in Shy (1995).

The fountain model is adopted to estimate the physical parameters in the fountain
at the density interface. The source conditions of the fountain given in table 1 are
applied in our numerical calculations. This model has a reasonable agreement with
the experimental results on the final depth that a fountain is able to reach (see table 5).

5.4. Penetrative entrainment at small Richardson numbers

At small Richardson numbers, the entrainment is quantitatively different from that
at large Richardson numbers, since the effect of the density step at the interface is
small. The fountain reverses owing to its negative buoyancy, not owing to the impact
on the interface. Kumagai (1984) presented limited experimental data in the range of
small Richardson numbers, Ri < 1.2. The range of Richardson numbers is from 0.1
to 70 in his experimental data, but most of them are larger than 1.2.

Kumagai (1984) claimed to observe a constant penetrative entrainment rate when
Richardson numbers were small (Ri < 0.25, see figure 12 in his paper). The value
(E = 0.32) he reported from his experimental results is smaller than the results
obtained in this study. However, that asymptotic constant (E = 0.56) from his
empirical equation (1.5) is contained in our experimental results (0.65 ± 0.17).

From our experimental results at small Richardson numbers, the penetrative
entrainment scales with two parameters, the contact area (Aint) and the vertical
velocity (wint) in the turbulent fountain at the interface. The large contact area
increases the area of mixing with the lower layer. The large impinging velocity
induces more entrainment into the turbulent fountain in the heavy layer and causes a
greater penetration depth across the interface. Both parameters increase the amount
of penetrative entrainment into the fountain from the heavy layer to the light layer.
The product of these two parameters is the impinging volume flux at the density
interface, which is considered as the parameter related to the penetrative entrainment
by a turbulent fountain at small Richardson number.

6. Conclusions
In this paper, we investigated the penetrative entrainment across a density interface

between two layers by a turbulent fountain. A new experimental arrangement was
set up to measure the penetrative entrainment by a turbulent fountain and the
steady-state flow was analysed. A theoretical model was established by assuming that
the stratification consists of two uniform layers. Experiments were conducted in two
different Plexiglas tanks, using salt solution and water as working fluids. Experimental
results were described qualitatively and presented quantitatively. Quantitative values
of the penetrative entrainment rate were determined.

The penetrative entrainment by a turbulent fountain is estimated quantitatively by
three independent formulae. These formulae are based on the penetrative entrainment
volume flux equal to the supply volume flux in the plume, the penetrative entrainment
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by the fountain across the density interface and the entrainment by the plume within
the upper layer.

From experimental observation, the time to reach the steady state in the
environment depends on the volume flux from the fountain source and the tank
size. The time to replace the lower-layer fluid depends on the size of the lower-layer
and the penetrative entrained volume flux at the interface. The time to replace the
upper-layer fluid depends on the size of the upper layer and the volume flux from
the fountain source.

Two quasi-uniform layers in the steady state were observed in the laboratory
experiments. The reduced gravity profile in the steady state has small fluctuations
around the mean profile. The lower layer has a nearly uniform reduced gravity value,
but there is a slight stable stratification in the upper layer. The stable stratification
in the upper layer may be caused by fluctuations of the turbulent fountain at the
density interface.

The penetrative entrained volume fluxes are determined from experimental data.
Three independent estimates have a maximum deviation of 50% between them, and
most are within 20%. Plume theory is applied to estimate the volume flux and
the reduced gravity in the plume and it shows good agreement with experimental
results of the measured reduced gravity values which are determined by the lighting
attenuation technique. The penetrative entrained volume flux QE1 is estimated from
the plume theory. The penetrative volume fluxes QE2 and QE3 are sensitive to the
accuracy of the measured reduced gravity. When the reduced gravity step between
two layers is smaller, the measurement accuracy is more sensitive to estimates of the
penetrative entrained volume fluxes. The three calculation methods give results in
reasonable agreement with each other.

The fountain model is used to estimate the values of the volume flux, the velocity
and the radius in the turbulent fountain. The penetrative entrainment rate E is
defined as the volume flux entrained by the fountain normalized by the volume flux
in the fountain at the interface. The value E1, which is estimated by the plume theory
and the fountain model, results in the smallest scatter between three penetrative
entrainment rates. The penetrative entrainment rates E2 and E3, which are estimated
by the measured reduced gravity, the volume flux of the fountain source and the
buoyancy flux of the plume respectively, have a similar scatter.

Our experimental results show a nearly constant penetrative entrainment rate
(E = 0.65 ± 0.17) by a turbulent fountain at small local Richardson number. The
local Richardson numbers are smaller than 1.2 in all of the experiments presented in
this study. This nearly constant penetrative entrainment rate by a turbulent fountain
is larger than those reported previously for a plume and this difference may be a
result of differences in their internal structures.

The authors would like to thank Dr Silvana Cardoso for several interesting
discussions on this study during her sabbatical at the University of California, San
Diego. Y. J. P. L. wishes to thank the Ministry of Education in Taiwan for providing
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